$\begin{gathered}\text { Change of Base: } \\ \text { formula }\end{gathered} \log _{b} a=\underset{\longrightarrow}{\log a}$
6.6 Exponential and Logarithmic Equations

OBJ: To solve exponential and logarithmic equations
Intro: You invest $\$ 1000$ or $\quad r=\frac{3}{100}=.03 \quad t=$?
Intro: You invest $\$ 1,000$ in a mutual fund at an interest rate of 3%. How many years would it take for your money to reach $\$ 2000$?

$$
\begin{array}{ll}
A(t)=A_{0}(1+r)^{t} \frac{\log _{1.03} 2(t)}{}=t \\
\frac{2000}{1000}=\frac{1000}{1000}(1+.03)^{t} & \frac{\log 2}{\log 1.03}=t \\
\log _{1.03} 2=\log _{1.03}(1.03)^{t} & \forall \text { Exponential } \\
\text { form } \log ^{t} & \\
\hline 23.4 y \text { rs } \approx t
\end{array}
$$

Problem . Find the solution of $5^{2 x} X=3$ by rewriting in logarithmic form.

Step 1: Add 1

$$
\begin{aligned}
\text { Formula } \\
\text { Step 4i Divide } 2 \text { or Multi. } 1 / 2
\end{aligned}
$$

$$
\begin{aligned}
5^{2 x}+1 & =4 \\
\log _{5} 5^{2 x} & =\log _{5} 4 \\
2 x & =\log _{5} 4 \\
\frac{1}{2} \cdot 2 x & =\frac{1}{2} \cdot \frac{\log ^{2} 4}{\log 5}=0.43 \\
x & =\frac{\log 4}{2 \log 5} \approx 0.4
\end{aligned}
$$

$$
\text { Step 2: } \underset{\text { Exponential form } \rightarrow \log _{\text {Foin }}}{\log _{5} 5^{2 x}=\log _{5} 4}
$$

$$
\begin{array}{lrl}
\text { Step 3: Change of Base Formula } & 1 \cdot 2 x & =\log _{5} 4 \\
& 1 . \log _{4} 4
\end{array}
$$

2 decimal places
Solve each exponential or logarithmic equation. Round the answer to the nearest hundredth.

* Exp. form \rightarrow

$$
\text { 1. } \begin{aligned}
4^{x}-8=3 \\
+8^{+}+5
\end{aligned} 4^{x}=8 ~ \begin{aligned}
4^{x} & =\log _{4} 8 \\
x & =\log _{4} 8 \\
x & =\frac{\log _{8} 8}{\log _{4}} \\
x & \approx \frac{3}{2}
\end{aligned}
$$

4. $3^{2 x-3}=7$

* Ep. Form \rightarrow

Log. Form

2. $\frac{7 \log x}{7}=\frac{21}{7}$

$$
\log _{10} x=3
$$

$$
x=10^{3}
$$

$$
x=1,000
$$

5. $\log _{5}(4 x-3)+6=4$

$$
\left\{\begin{aligned}
& \frac{-8}{8+2^{x+6}}=9 \\
& 2^{x+6}=4 \\
& \log 7^{x+6}=\log _{2} 4 \quad * \text { Exp form } \rightarrow \\
& x+6=\log _{2} 4 \\
& x=\log _{2} 4-6 \\
& x=\log _{2} 4 \\
& \log _{2} 2=-4
\end{aligned}\right.
$$

$$
\begin{aligned}
& 4 x-3=5^{-2} \\
& 4 x-3=\frac{1}{25} \\
& +35+3 \\
& \frac{1}{4} \cdot 4 x=3 \frac{1}{25} \text { or } \frac{76^{4}}{25} \cdot \frac{1}{4} \cdot 4
\end{aligned}
$$

$$
x=\frac{19}{25}
$$

7. $\ln (6+x)-\ln (3-x)=0$
$\begin{aligned} \ln \left(\frac{6+x}{3-x}\right) & =0 \\ \frac{6+x}{3-x} & =e^{0}\end{aligned}$

* Write as single log.
$* \log$. Form \rightarrow Exp. Form
$(3-x) \cdot \frac{6+x}{(3-x)}=1 \cdot(3-x)$

$$
\begin{array}{ll}
\frac{(3 x)}{6+x}=3-x \\
\frac{6+2 x}{6}=3 & \frac{2 x}{2}=\frac{-3}{2} \\
x=\frac{-3}{2}
\end{array}
$$

Solve each equation. Round answers to the nearest hundredth when necessary.

1. $8^{2 x}=32$
2. $8 \log x=16$
3. $4^{n-2}=3$
4. $\log 3 x=2$
5. $\ln (x-25)=2$
6. $\log (x-2)-\log (x+3)=1$
7. $4^{3 n}-1=5$
8. $3 \log (1-2 x)=6$
9. $2 \ln x-\ln 3=1$
10. A parent increases a child's allowance by 10% each year. If the allowance is $\$ 3$ now, when will it reach $\$ 15$?
11. You deposit $\$ 3000$ into a bank account that pays 1.25% annual interest, compounded quarterly. How much interest does the account earn after 5 years?
12. An exotic bird population is decreasing at a rate of 0.02 per year. There are currently about 100,000 birds in the population. How many birds will there be in the population in 150 years?

Warm-Up

1. Write the logarithmic expression as a single logarithm: $\log a-\log a b$
2. Expand the logarithm: $\log 2 x^{3} y$
