5.1 nth Roots and Radicals (Day 2)

OBJ: Solve for real solutions to find the nth roots

$\sqrt{9}$ vs. Solv	$x^2 = 9$ The nth Roo	<u>ot</u> <u>n is even</u> ze index a > 0,	Positive Roat a>0,	Positive Root
S) Check:	$ \begin{pmatrix} = \frac{+}{2} \\ \begin{pmatrix} n \\ n \end{pmatrix}^2 = q \end{pmatrix} $	Ex. 4/16 = 1 Fre-index a < 0, 1, Ex. 4/16 = 1	2 EX. 5/3 maginary Root Q<0 EX. 5/-1	2 = 2 Neg. Root
1. Evaluate each expressio	$(-3)^2 = 9 \checkmark$ n without a calculator.	۵ ^{۱۵} ن . هو		29. Cr. the recipion
a.) $8^{4/3}$ = $(3/8)^{4}$ = $(2)^{4}$ = 16	$b \ge \frac{16^{-5/4}}{1} = \frac{1}{16^{-5/4}}$ $= (\frac{1}{\sqrt{16}})^{5}$ $= \frac{1}{(2)^{5}}$ $\int_{-\frac{1}{32}}^{-\frac{1}{32}} \frac{1}{16^{-5/4}}$	$c.) 4^{5/2} = (\sqrt{4}) = (\sqrt{4}) = (2)^{5} = 32$	$d \cdot \frac{9^{-1}}{2}$	$e^2 = \frac{1}{9^{\nu_2}}$
2. Simplify each radical exp a. $\sqrt{36x^4}$ = $6\sqrt[3]{36x^4}$ = $2\sqrt[3]{36x^4}$ =	b. $\sqrt{162x^3}$ $9 \cdot 9$ $9 \cdot 9$ $3 \cdot 3$ $7 \cdot 9$ $7 \cdot$	$c. \sqrt[3]{-343x^9y^{12}}$	$d. \sqrt[4]{16x}$	2 ¹⁶ y ²⁰
x = ? 3. Solve for the real solu * even roo	tion(s). Approximate each	solution to the neares	st tenth when necessar	у.
a.) $\frac{5x^3}{x^3} = \frac{320}{5}$ $7x^3 = \frac{3}{64}$ $\chi = \frac{3}{64}$ $\chi = 4$	b. $\sqrt{(x+3)^4} = \frac{1}{x+3} = $	$\frac{24}{\sqrt{24}}$ $\frac{1}{\sqrt{24}}$ $\frac{1}{\sqrt{24}}$ $\frac{1}{\sqrt{24}}$ $\frac{1}{\sqrt{24}}$ $\frac{1}{\sqrt{24}}$ $\frac{1}{\sqrt{24}}$ $\frac{1}{\sqrt{24}}$	$c.) x^{\frac{1}{2}} \frac{\sqrt{16}}{\sqrt{625}}$ $x = \pm \frac{2}{5}$	
1 Real John. d. $7 \cdot \frac{1}{2}x^5 = 512 \cdot 2$ $5\sqrt{x^5} = 51024$ 7×10024 7×10024	$e.) = \frac{1}{(x+5)^4}$ $x+5 = \frac{1}{x+5}$ $x + \frac{1}{x+5}$ $x + \frac{1}{x+5}$	-0.8 - 5.7 16 $\sqrt{16}$ $\sqrt{16}$ -5 ± 2 -3 - 2 + 1	$f. \sqrt[3]{(x-2)^3} = \sqrt[3]{-14}$ $\chi - 2 = \frac{1}{\sqrt{3}} \sqrt[3]{-14}$ $\frac{\chi - 2}{+z} = -2.4$ $\frac{+z}{\sqrt{2}} = -0.4$	Ĵ
				P

4. One of the best used cars for teen insurance is a Mazda 3. The cost of a new Mazda 3 in 2015 was \$16,945. The current value is \$12,695. What is the rate of depreciation? If *r* represents the rate, *t* represents the number of years,

current value is \$12,595. What is the rate of depreciation? If r represents the rate, t represents the number C represents current value, and P represents original price, use the formula $C = P(1 - r)^{t}$. $12,695 = 16,945 \cdot (1 - r)^{4}$ $12,695 = 16,945 \cdot (1 - r)^{4}$ $12,695 = 16,945 \cdot (1 - r)^{4}$ $16,945 = 16,945 \cdot (1 - r)^{4}$ $16,955 = 16,945 \cdot (1 - r)^{4}$ $16,955 = 16,955 \cdot (1 - r)^{4}$ $16,955 \cdot (1 - r)^{4}$ $16,955 \cdot (1 - r)^{4}$ 16,9r= 7%

5.1 nth roots, Rational Exponents (Da	ay 2)	Name		
n Exercises 1–6, simplify each radical expression.				
1. $\sqrt{81x^4}$	2. $\sqrt{121y^{10}}$	3. $\sqrt[3]{8g^6}$		
4. $\sqrt[3]{125x^9}$	5. $\sqrt[5]{243x^5y^{15}}$	6. $\sqrt[3]{-\frac{64x^9}{-343}}$		
In Exercises 7–12, evaluate the expression without using a calculator.				
7. 36^{32}	8. 16 ^{3/4}	9. (-32) ^{2/5}		
10 $(-125)^{5/3}$	11 256- 5/4	12 $77^{-4/3}$		
	11. 20 '	12. 21		

In Exercises 13–18, Solve for the real solution(s). Approximate to two decimal places when appropriate.

13. $49x^2 = 25$ 14. $x^5 = -233$ 15. $x^4 + 19 = 100$

16.
$$(x-6)^2 = 40$$
 17. $\frac{1}{5}x^4 = 125$ 18. $\frac{1}{7}x^3 = -49$

19. The cost of an iPhone 7 in 2016 was \$769. The current value is \$549. What is the rate of depreciation? If *r* represents the rate, *t* represents the number of years, *C* represents current value, and *P* represents original price, use the formula $C = P(1 - r)^t$. Warm-Up Complete #1 in the notes.