$$
A_{1}(t)=A_{0}(1+5)^{T}{ }^{T}
$$

x seminars yens

1. You invest $\$ 4000$ into an account earning 3% interest. Find the amount at the end of 12 years if the interest is:
a.) compounded continuously

$$
A(t)=P e^{t t} \quad A(12)=4000 e^{.03(12)} \approx 5,733.31
$$

b.) compounded quarterly

$$
A(t)=A_{0}\left(1+\frac{r}{n}\right)^{n t} \quad A(12)=4000\left(1+\frac{03}{4}\right)^{4(12)}
$$

$\stackrel{\text { Solve each equation. }}{ }$

$$
\begin{array}{ll}
\frac{2.12-4^{x}=-5}{-12} & \text { 3. } \log _{2} 32=x \\
\frac{-4^{x}}{-1}=-17 & x=\frac{\log 32}{109} 2 \\
\log \frac{4}{4} x=\log 17 & x=5 \\
x=\frac{\log 17}{1 \log 4}=2.04
\end{array}
$$

Evaluate each logarithm. Show work.
6. $\log _{2} 64$
4. $\log 5-\log 2 x=1$
5. $\log (2 x+1)=\log (5 x-8)$

$$
\begin{array}{lll}
\text { 7. } \log _{\frac{1}{3}} \frac{1}{9}=x \quad \text { 8. } \log _{3} 81 & \text { 9. } \log _{3} \frac{1}{9} \\
x=2 & \log ^{\frac{1}{9}} \\
\log \frac{1}{3}
\end{array}=x
$$

10. $\log _{25} \frac{1}{5}$

What is each logarithmic expression written as a single logarithm?

11. $\log x-5 \log y$

$$
=\log x-\log y^{5}
$$

$$
=\log \left(\frac{x}{y} s\right)
$$

Use the change of base formula to rewrite the expression using common
14. $\log _{6} 41$
 logarithms and find the answer to the nearest tenth-thousandth:
16. My hourly wage is increased by $5=.05$. 5 each year. If my wage is now $\$ 10$ per hour, when will it reach $\$ 17$?

$$
\begin{array}{ll}
A(t) & =A_{0}(1+r)^{t} \\
17 & =10(1+05)^{t} \quad \log _{1.05} 17=\log 1.05^{t} \\
\frac{17}{10} & =\frac{10(1.05)^{t}}{t} \quad \frac{\log 17}{\log 1.05}=t
\end{array} \quad \begin{aligned}
& t \approx 109 \mathrm{yrs}
\end{aligned}
$$

17. The number of bacteria in a colony is 200. If these bacteria grow at a continuously hourly rate of 0.235 , how many hours will it take for the number of bacteria to reach 250 ?

$$
\begin{gathered}
A(t)=P e^{1 t} \\
\frac{250}{200}=200 e^{0.235 t} \\
\log _{e} 1.25=t^{0.235 t}
\end{gathered}
$$

18. Write the equation in logarithmic form $f_{1} 4^{3}=64^{\prime \prime}$

19. Write the equation in exponential form: $1000=3$

$$
3=\log _{-1} 64
$$

$$
1000=10^{3}
$$

True or False?
20. $\log _{2} 64=6$ is read "log base 2 of 64 is 6 "

True
21. The answer to a logarithm is the exponent of the related exponential equation.
\log
22. The inverse of the function $y=e^{x}$ is the natural g_{og} function. True
23. A logarithm with base 10 is a comnotlogarithm. True

Ch. 6 Review Exponential/Log Functions

24. The change of base formula is used to evaluate a \log in any base.
25. You invest $\$ 2000$ into an account earning 2% interest. Find the amount at the end of 5 years if the interest is:
a.) compounded continuously
b.) compounded monthly
26. My hourly wage is increased by 4% each year. If my wage is now $\$ 12$ per hour, when will it reach $\$ 15$?
27. The number of bacteria in a colony is 100. If these bacteria grow at a continuously hourly rate of 0.312 , how many hours will it take for the number of bacteria to reach 220 ?
28. Write the equation in logarithmic form: $4^{-2}=\frac{1}{16}$
29. Write the equation in exponential form: $\log 100=2$

Evaluate each logarithm. Show work.
6. $\log _{3} 243$
7. $\log _{\frac{1}{2}} \frac{1}{8}$
8. $\log _{2} 32$
9. $\log _{3} \frac{1}{27}$
10. $\log _{64} \frac{1}{4}$

What is each logarithmic expression written as a single logarithm?
11. $\log w-\log w c$
12. $\log x-3 \log y$
13. $2(\log x+\log y)$

Solve each equation. Round to the nearest ten-thousandth.
14. $10-3^{x}=-2$
15. $\log _{3} 81=x$
16. $\log (3 x+1)=\log (7 x-6)$
17. $\log 4-\log 3 x=2$
18. Use $\log _{4} 4 \approx 1.262$ and $\log _{8} 5 \approx 1.465$ to evaluate $\log _{3} 20$ to the nearest tenth-thousandth:

True or False?
19. The inverse of the function $y=10^{x}$ is the common \log function.
20. The answer to a logarithm is the exponent of the related exponential equation.
21. $\log _{3} 9=2$ is read "log base 3 of 9 is 2 "
22. A logarithm with base e is a natural logarithm.

Ch. 6 Review Exponential/Log Functions

23. The change of base formula is used to evaluate a log in any base.

Warm-Up
Solve each equation.

1. $4^{x}-5=3$
2. $\log 2 x=3$

Warm-Up

Solve each equation.

1. $2^{x}-5=3$
2. $\log _{2} 128=x$
3. Suppose you invest $\$ 2000$ at an annual interest rate of 5% compounded quarterly. How much will you have in the account in 10 years?
