

$$
\begin{equation*}
\text { Marks }=\operatorname{Pd} \div 4=12.4 \div 4=3.1 \quad \text { she }=4.25-\frac{1}{4} \text { starts } \tag{12.4}
\end{equation*}
$$

1. The depth of water at the end of a pier varies with the tides throughout the day. Today the high tide occurs at $4: 15 \mathrm{a} . \mathrm{m}$. . with a depth of 5.2 m . The low tide occurs at $10: 27 \mathrm{a} . \mathrm{m}$ with a depth of 2.0 m .
$C=t=4 \frac{15}{60}=4.25$
a) Find a trigonometric equation that models , the depth of the water t hours after midnight.
c) A large boat needs at least 3 m of water to moor at the end of the pier. During what time period after noon can it safely moor? $D(t) \geq 3$

$$
\begin{aligned}
\Delta(t) & =1.6 \cos \frac{5 \pi}{31}(t-4.25)+3.6 \\
3 & =1.6 \cos \frac{5 \pi}{31}(t-4.25)+3.6
\end{aligned}
$$

$$
-0.6=1.6 \cos \frac{5 \pi}{3!}(t-4.25)
$$

$$
\underbrace{\cos ^{-1}(-0.375)}_{e f<}=1.19 \text { - } \cos \frac{5 \pi}{31}(t-4.25)
$$

$$
Q_{2}: \pi-1.19=1.95
$$

$$
Q 3: \pi+1.19=4.33
$$

$$
1.95,4.33,2 \pi+1.95=\frac{5 \pi}{31}(t-4.25)
$$

$$
\begin{aligned}
& \ldots \ldots \ldots \ldots{ }^{5}{ }^{6} \\
& A=1.6 \\
& D=\frac{\text { Max }+ \text { Min }}{2}=\frac{5.2+20}{2} \\
& \begin{array}{l}
P_{d}=2(\text { Time La Tile High) } \\
P_{d}=2(10.45-4.25) \\
P d=12.4 \text { b) Find the death of the water at noon. } \\
D(12)=\text { ? }
\end{array} \\
& D=3.6 \\
& P d=12.4 \begin{array}{lll}
\text { b) Find the depth of the water at noon, } \\
D(12)=? & & B=\frac{2 \pi}{P d}=\frac{2 \pi}{12.4}=\frac{\pi}{6.2}=\frac{10 \pi}{62}=\frac{5 \pi}{31} \\
& 10.45 \quad D(t)=1.6 \cos \frac{5 \pi}{31}(t-4.25)+3.6
\end{array} \\
& D(12)=1.6 \cos \frac{5 \pi}{31}(12-4.25)+3.6 \approx 2.47 m=1.6 \sin \frac{5 \pi}{31}(-1.15)+3.6
\end{aligned}
$$

