6.5 Parabolas

HW p. 240 \#2, $75,6,7,11,15,18,26,77$
Definition of a parabola:

Geometrically:
A parabola is the set of all points in the plane that are equidistant from a fixed point, called the focus, and a fixed line,
called the directix.

$$
\begin{gathered}
\sqrt{(x-0)^{2}+(y-p)^{2}}=\sqrt{(x-x)^{2}+(y p)^{2}} \\
y=\frac{4 p}{4 p} x^{2}
\end{gathered}
$$

d) Opens lett: $x=-\frac{1}{4 p} y^{2}$

$x=p$

1. Find the focus and directix of the parabola for the equation $y=2 x^{2}$. $y=\frac{1}{4 \rho} x^{2}$

2. Find the focus and directix of the parabola for the equation $x=\frac{1}{20} y^{2}$.Then sketch its graph.

$$
\begin{aligned}
& \text { Focus: }(5,0) \\
& \text { Directrix: } x=-5
\end{aligned}
$$

Latus Rectum: Line segment through the \square whose \qquad fall on the parabola.
3. Tell whether the parabola $x-1=-\frac{1}{2}(y+2)^{2}$ opens up, down. Right or left. Give the coordinates of the vertex and focus and the equation of the directix.

* opens left $x=-\frac{1}{2}(y+2)^{2}+h \rightarrow x=a(y-k)^{2}+h$

$a=\frac{1}{4 p}$
* Opens up or down

Focus: $-\frac{1}{4 p}=-\frac{1}{2}$

$$
4 p=2
$$

$$
y=a(x-h)^{2}+k
$$

$-\infty(1,-2)$

$$
p=\frac{1}{2}
$$

Directrix: $x=h+p$

$$
x=1+\frac{1}{2}
$$

$\left(1-\frac{1}{2},-2\right)$ sous: $\left(\frac{1}{2},-2\right) \quad p=\frac{1}{2}$
Left.
4. Find an equation of the parabola with vertex (0,0) and focus $\left(0,-\frac{3}{2}\right)$. Sketch the graph of me parabola.
$x=1 \frac{1}{2}$

$$
x=1 \frac{1}{2}
$$

$$
\begin{aligned}
& y=-\frac{1}{4 \cdot p} x^{2} \\
& y=-\frac{1}{4\left(\frac{3}{2}\right)} x^{2}
\end{aligned}
$$

$$
y=-\frac{1}{6} x^{2}
$$

$$
\begin{aligned}
& \text { Length } \\
& \text { of Lotus }
\end{aligned}\left|\frac{1}{-1 / h}\right|
$$

Rectum
units

5. Find the vertex, focus, and directix of the parabola. Then sketch the graph of the parabola:

16 $4 y=x^{2}-8 x+12$.
$\left.16+4 y=x^{2}-8 x+16\right]+12$

$$
\begin{aligned}
16+4 y & =(x-4)^{2}+12 \\
4 y & =(x-4)^{2}-4 \\
y & =\frac{1}{4}(x-4)^{2}-1
\end{aligned}
$$

Vertex: $\binom{h}{4,-k}$
Focus: $(h, k+p)$

* Sub il
* Div. 4

Lathes Rectum: $\left|\frac{1}{a}\right|=\left|\frac{1}{1 / 4}\right|$

$$
=4 \text { units }
$$

Direchix:

$$
\begin{aligned}
& y=k-p \\
& y=-1-1 \\
& y=-2
\end{aligned}
$$

Warm-Up

Consider the equation: $y=2 x^{2}+8 x-3$.

1. The graph of the equation is called a \qquad .
2. Find the x - and y-intercepts of the graph of the equation.

3 . Find the coordinates of the vertex of the graph of the equation.
4. Find the axis of symmetry of the equation. What is the domain and range of the equation?

