

$$
\begin{aligned}
& \text { Sketch } f(x)=\left(\frac{1}{2}\right)^{x} \text { or }\left(2^{-1}\right)^{X}=\text { In General, for an Exponential } \\
& \text { De fay }
\end{aligned}
$$

$$
* \text { Decay } 0<b<1
$$

b) Find $f(-2)$.

$$
\begin{array}{ll}
\text { b) Find } f(-2) \text {. } \\
f(-2)=3(2)^{-2} & 3=a
\end{array}
$$

* Growth $b>1$ Linear funct. $b=1$ $b<0$ Not an Exp act.

a) Given $f(0)=3$ and $f(2)=12$, determine the equation of the exponential function $f(x)=a b^{x}$.

$$
\begin{aligned}
& f(x)=3 b^{x} \\
& \underbrace{f(2)}_{12}=3 b^{2}
\end{aligned}
$$

$$
4=b^{2}
$$

$$
=3 / 4
$$

Growth: $A(t)=A_{0}^{\text {Exponential Growth \& Decay }}(1+r)^{t}$ increase, rate, growth
oder: $A(t)=A_{0}(1-r)^{t} \quad$ decrease, rate, deprecind

$$
A(t)=A_{0}^{H=b_{R} \rightarrow t / K \leftarrow \text { amount of tome to double, tritely }}
$$

2. Describe the situation in a sentence or two. $A(t)=100(3)^{\frac{t}{4}}$
schod lunch costs \$100. The cost triples every 4 years.
3. Given the data table, form an exponential function for the data. Then determine $P(t)$ for $t=24 \mathrm{hrs}$.

$$
\begin{aligned}
& A(t)=A_{0}(3)^{t / 6} \\
& 260=A_{0}(3)^{3 / 6} \\
& 260=A_{0} \sqrt{3} \\
& \begin{array}{l}
\frac{260}{\sqrt{3}}=A_{0} \\
150 \approx A_{0}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& P(24)=150(3)^{24}=
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { and } f(2)=12 \text {, determine the } \\
\text { s to you need? } a n d ~
\end{array} \\
& f(x)=a b^{x} \rightarrow \\
& f(0)=a b^{0} \\
& 3=a(1)
\end{aligned}
$$

Rule of 72
If a quantity is growing at \lceil \% per unit of time (year, day, month, etc...), then the $\underset{\sim}{m}$ abe is approximately Fa not decimal form
4. A bacteria colony increases 8% per day. Approximately how long does it take the colony to double in size?

$$
t \approx 72 \div 8 \%=9 \text { days }
$$

