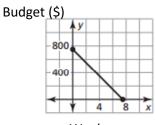
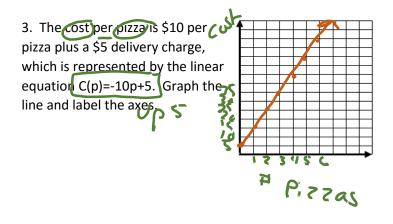

1.3 Modeling with Linear Functions (Day 1)

OBJ: Write equations of linear functions using points and slopes; Find lines of fit and lines of best fit Essential Question: How can you use a linear function to model and analyze a real-life situation?

.3 Day 1 HW

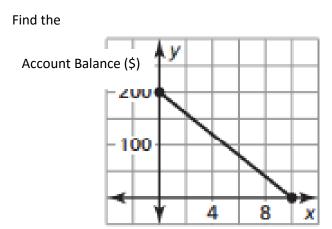

Interpret each scenario.

1. a) What is your starting distance from home?b) How fast are you riding your bike home (rate of change or slope)?


Distance from home							
(mi	le	s)	y				
-	2	00<		_	+	-	
	10)0		\backslash		E	
ŀ	•	,	r	4		8	×
			C	ays	5		

2. a) What is the starting amount of your budget?b) How much are you spending per week (rate of change or slope)?

Name


Week

4. Cable TV costs \$100 per month plus a \$50 installation fee, which is represented by t linear equation C(m)=5m+50. Graph the line and label the axes.

•						
\vdash	-	-				
-	-	-	-			
-						

slope and interpret the slope.

Time (Days)